Évaluations standardises du second semestre - TS1 - 2024-2025

  • Posted on: 29 May 2025
  • By: sbana

 Épreuve de mathématiques

Exercice 1 :

On précise que les questions sont indépendantes.

1. Trouver toutes les paires d'entiers naturels non nuls $a$ et $b$  tels que : $\left\lbrace\begin{array}{rcl}
PPCM(a\;,b)&=&3PGCD(a\;,b)&=&276\\ 10&<&PGCD(a\;,b)&<&30 \end{array}\right.$

2. Déterminer tous les entiers relatifs $x$ et $y$ tels que : $37x+23y=1$

3. Résoudre dans $\mathbb{N}$, $2^{n}+3^{n}\equiv 0[7]$

4. Trouver suivant les valeurs de l'entier naturel $n$ le reste de la division par $11$ du nombre                            

$a=10^{2n+4}-2\times 10^{n+2}+1$

5. Trouver les deux derniers chiffres de $7^{(9^{(9^{9}})}$                                                                                         

Exercice 2 :

On considère la courbe paramétrée définie par les équations ; $\left\lbrace\begin{array}{rcl} x't)&=&a\cos^{3}t\\ y(t)&=&a\sin^{3}t \end{array}\right.$

1.a. Calculer $x(t+2\pi)$ et $y(t+2\pi)$ puis conclure.                                                                       

b, Calculer $x(t+\pi)$ et $y(t+\pi)$ puis conclure.                                                                            

c. Calculer $x(-t)$ et $y(-t)$ puis conclure.
                                                                                  
d. Calculer $x\left(\dfrac{\pi}{2}-t\right)$ et $y\left(\dfrac{\pi}{2}-t\right)$ puis conclure.
                                                                        
2. Avec les conclusions de la question $1.$, on peut faire l'étude pour t appartenant à $\left[\ ;\ \dfrac{\pi}{4}\right]$

a. Dresser le tableau de variations conjointes.                                                                                    

b. Construire la courbe pour $a=2\ldots$
 
Problème :
 
Partie A

 
Soit $S$ l'ensemble des fonctions numériques $f$ d'une variable réelle dérivables sur $]-2\ ;\ +\infty[$ et vérifiant la relation : $f\forall x\in]-2\ ;\ +\infty[\;,[(2+x)f'(x)+f(x)=1+\ln(2+x)$

1. Soit $f$ un élément de $S$, $g$ la fonction dérivable sur l'intervalle $]-2\ ;\ +\infty[$ et définie par  $g(x)=(2+x)f(x)$
 
a. Démontrer que $g$ est une primitive sur l'intervalle $]-2\ ;\ +\infty[$ de la fonction ℎ définie par  $h(x)=1+\ln(2+x)$

b. Réciproquement , $g_{1}$ est une primitive de la fonction $h$ sur $]-2\ ;;\ +\infty[$, démontrer que la fonction $t$ définie par : $\forall t\in]-2\ ;\ +\infty[\;,t(x)=\dfrac{g_{1}(x)}{2+x}$ est  un élément de $S.$
                                                 
2.  A l'aide d'une intégration par parties déterminer l'ensemble  des primitives de $h$ sur  $]-2\ ;\ +\infty[$
 
En déduire l'ensemble $S$
     
Partie B

1. On considère l'ensemble des fonctions $f_{k}\ :\ x\mapsto \ln(2+x)+\dfrac{k}{2+x}$ dérivable sur l'intervalle est un paramètre réel.    
                                                          
a. Calculer suivant les valeurs de $k$ les limites de $f_{k}$ aux bornes de son ensemble de  
définition $D_{f }k=]-2\ ;\ +\infty[$
                                                                                                     
b. Étudier le sens de variations de $f_{k}$ et dresser son tableau de variation suivant les valeurs de $k.$
                                                                                                                                       
c. Dans un même repère orthogonal $\left(O\;,\vec{i}\;,\vec{j}\right)$ avec $\left|\left|\vec{i}\right|\right|=1\,cm$ et $\left|\left|j\right|\right|=2\,cm$, tracer les courbes respectives des  fonctions  $f_{-2}$, $f_{0}$ et $f_{1}$

2. $\forall t\in\mathbb{R}$ et $\forall n\in\mathbb{N}\lbrace 0\ ;\ \rbrace$ on pose : $Q_{n-2}(t)=-t+(1+t)^{2}+\ldots +(-1)^{n+2}(1+t)^{n-2}$
 
a. Démontrer que : $\forall t \in\mathbb{R}\lbrace 0\ ;\ 1\rbrace\;, Q_{n-2}(t)=\dfrac{1(1)^{n-1}(1+t)^{n-1}}{2+t}$ puis en déduire que                                         

$\dfrac{1}{2+t}=-t+(1+t)^{2}+\ldots+(-1)^{n-2}(1+t)^{n-2}+\dfrac{(-1)^{n-1}(1+t)^{n-1}}{2+t}$
 
b. Démontrer que : $\forall x\in]-1\ ;\ 0[\;,f_{0}(x)=P_{n-1}(x)+(-1)^{n-1}\int_{-1}^{x}         \dfrac{(1+t)^{n-1}}{2+t}dt$ où $P_{n-1}(x)$ est un polynôme que l'on précisera.
                                                                                             
3. On considère la fonction $\Phi$ définie par $\Phi(x)=\left\lbrace\begin{array}{rcl} \dfrac{f_{0}(x)}{x+1}&\text{ si }x\in]-1\ ;\ 0[\\ 1&\text{si }x=-1 \end{array}\right.$
 
a. Démontrer que $\forall x\in[-1\ ;\ 0]\;,\int_{-1}^{x}\dfrac{(1+t)^{n-1}}{2+t}dt\leq \dfrac{1}{n}$
 
b. Utiliser la question $2.b$ pour démontrer que : $\forall x\in\left|\Phi(x)-\dfrac{P_{n-1}(x)}{x+1}\right|\leq\dfrac{1}{n(x+1)}$
 
c. Démontrer que :  

$\begin{array}{rcl} \int_{-1+\dfrac{1}{n}}^{0}&\Phi&(x)dx+\dfrac{1}{n}\ln\left(\dfrac{1}{n}\right)+S_{n}\left(-1+\dfrac{1}{n}\right)\leq S_{n}(0)\leq \int_{-1+\dfrac{1}{n}}^{0}\\&\Phi&(x)dx-\dfrac{1}{n}\ln\left(\dfrac{1}{n}\right)+S_{n}\left(-1+\dfrac{1}{n}\right) \end{array}$

où $S_{n}(x)=x-\dfrac{1}{2^{2}}(1+x)^{2}+\dfrac{1}{3^{2}}(1+x)^{3}\ldots +(-1)^{n-2}\dfrac{(1+x)^{n-1}}{(n-1)^{2}}\;,n\geq 2$

Partie C   

Soit $\psi_{n}(x)=\sum_{i=0}^{2n-1}(-1)^{i}(1+x)^{i}$

1. Démontrer par récurrence que, $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,\forall x\in]-2\ ;\ +\infty[$

$f_{0}^{'}(x)=\phi_{n}(x)+\dfrac{(1+x)^{2n}}{2+x}$

2. Démontrer que $\forall n\in\mathbb{N}\;, 0\leq\int_{-1}^{0}\dfrac{(1+x)^{2n}}{2+x}dx\leq\dfrac{1}{2n+1}$
 ∙                                                         
3. On considère la suite $\left(U_{n}\right)$ définie par : $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,U_{n}=\sum_{i=1}^{n}\dfrac{(-1)^{i+1}}{i}$

a.  Démontrer que $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,f_{0}(0)=U_{n}+\int_{-1}^{0}\dfrac{(1+x)^{2n}}{2+x}dx$

b. En déduire la limite de la suite $\left(U_{n}\right)$

 

Commentaires

Nice post. I learn something totally new and challenging on sites I stumbleupon everyday. It's always exciting to read content from other writers and use something from other websites.
<a href=https://myzain.topupmobilekw.com/>www zain kuwait com</a>

This web-based service enables instant conversion of images into JPG format, supporting common types such as JPG. All operations take place within the browser, with no need for app downloads or user accounts. Up to 20 files can be converted in a single session, improving efficiency for repetitive or large-scale tasks. Once files are processed, they are deleted from the system to maintain privacy and prevent unnecessary storage. JPEGtoJPGHERO is designed to work across all devices and browser types, offering a seamless experience whether on a computer, phone, or tablet. Its minimal layout emphasizes clarity and speed, guiding users directly to results. From resizing visuals for websites to preparing files for cloud storage, the platform handles JPEGtoJPGhero conversion with accuracy and ease. Its emphasis on simplicity and security makes it an excellent choice for both casual users and professionals who require consistent, reliable output.
https://secondstreet.ru/profile/AnnyGood/

It's amazing to pay a visit this web page and reading the views of all mates on the topic of this post, while I am also eager of getting familiarity.
https://golosiyiv.kiev.ua/ru/2025/04/kriptovaljuta-v-realnoj-zhizni-kak-...

Pretty! This was a really wonderful post. Thank you for supplying these details.
<a href=https://https://darbcardae.icu/>al hilal bank al ain mall</a>

JPGtoPNGHero.com is a free, online converter crafted to turn JPG files into PNG images with ease. Whether you’re preparing icons for a mobile app or converting family photos for a digital scrapbook, the process is straightforward: upload, wait a moment, and download. The server-side engine preserves image quality, ensuring sharpness and accurate color reproduction. A visible progress indicator tracks each file’s status in real time. Need to convert a whole folder of images? Batch conversion handles multiple JPGs at once, streamlining your workflow. Since the converter works entirely in a browser, it’s compatible with Windows, macOS, Linux, Android, and iOS—no installations required. Privacy is built in: all uploads are automatically deleted shortly after processing, and no user data is stored on the server. The site remains ad-free, requires no user account, and imposes no conversion limits. Whether you’re a digital artist, social media manager, or just someone who needs to change image formats, JPGtoPNGHero.com offers a fast, reliable, and hassle-free experience.
<a href=https://africanamericans.einnews.com/pr_news/797301987/jpgtopnghero-com-...

An impressive share! I have just forwarded this onto a colleague who has been doing a little homework on this. And he in fact bought me dinner due to the fact that I found it for him... lol. So let me reword this.... Thanks for the meal!! But yeah, thanx for spending some time to talk about this matter here on your website.
https://s-boutique.com.ua/slipi-fary-sprobuj-zaminyty-lyshe-sklo-i-zdyvu...

Its like you read my mind! You appear to know so much about this, like you wrote the book in it or something. I think that you could do with a few pics to drive the message home a little bit, but instead of that, this is wonderful blog. An excellent read. I will certainly be back.
http://mama-86.org.ua/kroky-dlya-pravylnoyi-zaminy-skla-na-faru.html

Hi, this weekend is fastidious in favor of me, since this occasion i am reading this impressive informative paragraph here at my house.
https://start.co.ua/korpus-fary-yak-vybraty-stylnyj-dyzajn.html

JPGtoPNGHero.com provides a simple, browser-based solution for converting JPG files into PNG images. Designed with both professionals and beginners in mind, the site keeps its interface clean: a single “Upload” button and a drag-and-drop field guide users through the process. After you select your images, cloud servers perform the conversion automatically, preserving image clarity and transparency where relevant. Real-time progress indicators display each file’s status, and once finished, you’ll see download links appear immediately. The batch conversion feature lets you convert multiple files at once, ideal for photographers or marketers who need to process large sets of visuals. Because the tool is web-based, it supports all major operating systems—Windows, macOS, Linux, Android, and iOS—without any extra setup. Privacy ranks high: all files get deleted from the server soon after conversion, and no personal information is stored. No account is necessary, and the service remains completely free. From resizing logos for ecommerce sites to preparing artwork for presentations, JPGtoPNGHero.com makes image conversion effortless.
<a href=https://software.einnews.com/pr_news/797301987/jpgtopnghero-com-official...

Ajouter un commentaire

Plain text

  • Aucune balise HTML autorisée.
  • Les adresses de pages web et de courriels sont transformées en liens automatiquement.
  • Les lignes et les paragraphes vont à la ligne automatiquement.