Évaluations standardises du second semestre - TS1 - 2024-2025
Épreuve de mathématiques
Exercice 1 :
On précise que les questions sont indépendantes.
1. Trouver toutes les paires d'entiers naturels non nuls $a$ et $b$ tels que : $\left\lbrace\begin{array}{rcl}
PPCM(a\;,b)&=&3PGCD(a\;,b)&=&276\\ 10&<&PGCD(a\;,b)&<&30 \end{array}\right.$
2. Déterminer tous les entiers relatifs $x$ et $y$ tels que : $37x+23y=1$
3. Résoudre dans $\mathbb{N}$, $2^{n}+3^{n}\equiv 0[7]$
4. Trouver suivant les valeurs de l'entier naturel $n$ le reste de la division par $11$ du nombre
$a=10^{2n+4}-2\times 10^{n+2}+1$
5. Trouver les deux derniers chiffres de $7^{(9^{(9^{9}})}$
Exercice 2 :
On considère la courbe paramétrée définie par les équations ; $\left\lbrace\begin{array}{rcl} x't)&=&a\cos^{3}t\\ y(t)&=&a\sin^{3}t \end{array}\right.$
1.a. Calculer $x(t+2\pi)$ et $y(t+2\pi)$ puis conclure.
b, Calculer $x(t+\pi)$ et $y(t+\pi)$ puis conclure.
c. Calculer $x(-t)$ et $y(-t)$ puis conclure.
d. Calculer $x\left(\dfrac{\pi}{2}-t\right)$ et $y\left(\dfrac{\pi}{2}-t\right)$ puis conclure.
2. Avec les conclusions de la question $1.$, on peut faire l'étude pour t appartenant à $\left[\ ;\ \dfrac{\pi}{4}\right]$
a. Dresser le tableau de variations conjointes.
b. Construire la courbe pour $a=2\ldots$
Problème :
Partie A
Soit $S$ l'ensemble des fonctions numériques $f$ d'une variable réelle dérivables sur $]-2\ ;\ +\infty[$ et vérifiant la relation : $f\forall x\in]-2\ ;\ +\infty[\;,[(2+x)f'(x)+f(x)=1+\ln(2+x)$
1. Soit $f$ un élément de $S$, $g$ la fonction dérivable sur l'intervalle $]-2\ ;\ +\infty[$ et définie par $g(x)=(2+x)f(x)$
a. Démontrer que $g$ est une primitive sur l'intervalle $]-2\ ;\ +\infty[$ de la fonction ℎ définie par $h(x)=1+\ln(2+x)$
b. Réciproquement , $g_{1}$ est une primitive de la fonction $h$ sur $]-2\ ;;\ +\infty[$, démontrer que la fonction $t$ définie par : $\forall t\in]-2\ ;\ +\infty[\;,t(x)=\dfrac{g_{1}(x)}{2+x}$ est un élément de $S.$
2. A l'aide d'une intégration par parties déterminer l'ensemble des primitives de $h$ sur $]-2\ ;\ +\infty[$
En déduire l'ensemble $S$
Partie B
1. On considère l'ensemble des fonctions $f_{k}\ :\ x\mapsto \ln(2+x)+\dfrac{k}{2+x}$ dérivable sur l'intervalle est un paramètre réel.
a. Calculer suivant les valeurs de $k$ les limites de $f_{k}$ aux bornes de son ensemble de
définition $D_{f }k=]-2\ ;\ +\infty[$
b. Étudier le sens de variations de $f_{k}$ et dresser son tableau de variation suivant les valeurs de $k.$
c. Dans un même repère orthogonal $\left(O\;,\vec{i}\;,\vec{j}\right)$ avec $\left|\left|\vec{i}\right|\right|=1\,cm$ et $\left|\left|j\right|\right|=2\,cm$, tracer les courbes respectives des fonctions $f_{-2}$, $f_{0}$ et $f_{1}$
2. $\forall t\in\mathbb{R}$ et $\forall n\in\mathbb{N}\lbrace 0\ ;\ \rbrace$ on pose : $Q_{n-2}(t)=-t+(1+t)^{2}+\ldots +(-1)^{n+2}(1+t)^{n-2}$
a. Démontrer que : $\forall t \in\mathbb{R}\lbrace 0\ ;\ 1\rbrace\;, Q_{n-2}(t)=\dfrac{1(1)^{n-1}(1+t)^{n-1}}{2+t}$ puis en déduire que
$\dfrac{1}{2+t}=-t+(1+t)^{2}+\ldots+(-1)^{n-2}(1+t)^{n-2}+\dfrac{(-1)^{n-1}(1+t)^{n-1}}{2+t}$
b. Démontrer que : $\forall x\in]-1\ ;\ 0[\;,f_{0}(x)=P_{n-1}(x)+(-1)^{n-1}\int_{-1}^{x} \dfrac{(1+t)^{n-1}}{2+t}dt$ où $P_{n-1}(x)$ est un polynôme que l'on précisera.
3. On considère la fonction $\Phi$ définie par $\Phi(x)=\left\lbrace\begin{array}{rcl} \dfrac{f_{0}(x)}{x+1}&\text{ si }x\in]-1\ ;\ 0[\\ 1&\text{si }x=-1 \end{array}\right.$
a. Démontrer que $\forall x\in[-1\ ;\ 0]\;,\int_{-1}^{x}\dfrac{(1+t)^{n-1}}{2+t}dt\leq \dfrac{1}{n}$
b. Utiliser la question $2.b$ pour démontrer que : $\forall x\in\left|\Phi(x)-\dfrac{P_{n-1}(x)}{x+1}\right|\leq\dfrac{1}{n(x+1)}$
c. Démontrer que :
$\begin{array}{rcl} \int_{-1+\dfrac{1}{n}}^{0}&\Phi&(x)dx+\dfrac{1}{n}\ln\left(\dfrac{1}{n}\right)+S_{n}\left(-1+\dfrac{1}{n}\right)\leq S_{n}(0)\leq \int_{-1+\dfrac{1}{n}}^{0}\\&\Phi&(x)dx-\dfrac{1}{n}\ln\left(\dfrac{1}{n}\right)+S_{n}\left(-1+\dfrac{1}{n}\right) \end{array}$
où $S_{n}(x)=x-\dfrac{1}{2^{2}}(1+x)^{2}+\dfrac{1}{3^{2}}(1+x)^{3}\ldots +(-1)^{n-2}\dfrac{(1+x)^{n-1}}{(n-1)^{2}}\;,n\geq 2$
Partie C
Soit $\psi_{n}(x)=\sum_{i=0}^{2n-1}(-1)^{i}(1+x)^{i}$
1. Démontrer par récurrence que, $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,\forall x\in]-2\ ;\ +\infty[$
$f_{0}^{'}(x)=\phi_{n}(x)+\dfrac{(1+x)^{2n}}{2+x}$
2. Démontrer que $\forall n\in\mathbb{N}\;, 0\leq\int_{-1}^{0}\dfrac{(1+x)^{2n}}{2+x}dx\leq\dfrac{1}{2n+1}$
∙
3. On considère la suite $\left(U_{n}\right)$ définie par : $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,U_{n}=\sum_{i=1}^{n}\dfrac{(-1)^{i+1}}{i}$
a. Démontrer que $\forall n\in\mathbb{N}\lbrace 0\rbrace\;,f_{0}(0)=U_{n}+\int_{-1}^{0}\dfrac{(1+x)^{2n}}{2+x}dx$
b. En déduire la limite de la suite $\left(U_{n}\right)$
Commentaires
PabloFaf (non vérifié)
ven, 01/30/2026 - 01:22
Permalien
Ритуальные услуги в Ульяновске: качественно и с уважением
Наш сайт поддержит вас в сложный момент, предоставив профессиональные услуги.
Сайт разработан для вашего удобства. Вы легко найдетенеобходимую информацию о процедурах и услугах для принятия взвешенного решения.
Данные регулярно актуализируются, чтобы соответствовать вашим ожиданиям.
Свяжитесь с нами для консультации, чтобы обсудить условия сотрудничества и получить дополнительные разъяснения. https://www.cheaperseeker.com/u/linkcorp
PabloFaf (non vérifié)
ven, 01/30/2026 - 04:11
Permalien
Организация похорон в Ульяновске: профессиональный подход
Если вам требуется помощь в организации похорон, обратите внимание на наш сайт, где вы найдёте полную информацию о ритуальных услугах в регионе.
Сайт разработан для вашего удобства. Вы легко найдетенеобходимую информацию о процедурах и услугах для принятия взвешенного решения.
Данные регулярно актуализируются, чтобы соответствовать вашим ожиданиям.
Заполните форму для связи, и мы вам поможем, и получите полную поддержку на всех этапах. https://www.librarything.com/profile/andreykomarov73
RandallEUROG (non vérifié)
sam, 01/31/2026 - 03:11
Permalien
Экспресс сервис роз Москва
<a href=https://dostavka-cvetov-moskva495.ru/>самые дешевые букеты в москве</a> Срочно букет курьером Москва
RodneyNeM (non vérifié)
sam, 01/31/2026 - 05:12
Permalien
se4g6h57ju
<a href=https://auto.qa/showrooms/>https://auto.qa/showrooms/</a>
RandallEUROG (non vérifié)
sam, 01/31/2026 - 05:29
Permalien
Доставка композиций служба Москва
<a href=https://dostavka-cvetov-moskva495.ru/>самые дешевые букеты в москве</a> Заказ свежих букетов Москва
Kennethkak (non vérifié)
sam, 01/31/2026 - 11:03
Permalien
Uncover New Movie Recommendations using Our Tool.
You can explore various cinematic themes through this service.Every collection provides visual posters, video trailers, and practical streaming guides,and the collections are sorted by various interests.Fresh content is periodically incorporated to enhance the offerings.This approach saves you time by consolidating resources in one place.You can find recommendations suited to your mood. https://cinepicker.com/
Kennethkak (non vérifié)
sam, 01/31/2026 - 15:08
Permalien
Discover Your Next Favorite Movie with Our Resource.
This extensive platform serves as a guide for film enthusiasts.Each selection includes posters, trailers, and direct links to streaming services,and the collections are sorted by various interests.The content is regularly updated with fresh picks.This approach saves you time by consolidating resources in one place.You can find recommendations that match your taste. https://cinepicker.com/
Kennethkak (non vérifié)
sam, 01/31/2026 - 23:39
Permalien
Uncover New Movie Recommendations on Our Site.
This site offers a curated approach to film discovery.Each selection includes posters, trailers, and direct links to streaming services,and the collections are structured around diverse topics.The content is frequently updated with new additions.This approach saves you time by consolidating resources on a single platform.You can discover new films based on your preferences. https://cinepicker.com/
Shelbyawasp (non vérifié)
dim, 02/01/2026 - 00:51
Permalien
тик ток мод россия 2026
<a href=https://tiktokmod.xyz/>скачать новый тик ток мод 2026</a> тик ток мод бесплатно
Kennethkak (non vérifié)
dim, 02/01/2026 - 03:02
Permalien
Get Personalized Movie Suggestions on Our Site.
You can explore various cinematic themes through this service.Each selection includes curated posters, official trailers, and accessible streaming options,and the collections are structured around diverse topics.New titles are consistently added to keep the selection current.This approach simplifies movie selection via a unified platform.You can access this content easily. https://cinepicker.com/
OLanewouro (non vérifié)
dim, 02/01/2026 - 13:18
Permalien
FobertLearm
La mГЎxima adrenalina surge en la fase de aterrizaje: si el aviГіn aterriza correctamente a la base en el portaaviones, ganas la victoria; si se estrella, pierdes la inversiГіn. Este sistema de todo o nada hace que cada ronda de Avia Master sea una experiencia intensa sin igual.
<a href=https://aviamasters.nom.es/>aviamasters.nom.es</a>
Kennethkak (non vérifié)
dim, 02/01/2026 - 14:39
Permalien
Get Personalized Movie Suggestions via Our Service.
You can explore various film themes through this service.Each selection includes high-quality posters, engaging trailers, and convenient streaming links,and the collections are categorized for straightforward navigation.Fresh content is periodically incorporated to expand the offerings.This approach streamlines your search by bringing together all necessary elements.You can browse the collections leisurely. https://cinepicker.com/
Kennethkak (non vérifié)
dim, 02/01/2026 - 21:42
Permalien
Dive into Thematic Film Collections with This Guide.
This resource is designed to help you discover interesting movies.Every collection provides movie posters, preview trailers, and direct streaming access,and the collections are categorized for straightforward navigation.Fresh content is periodically incorporated to enhance the offerings.This approach streamlines your search by bringing together all necessary elements.You can find recommendations suited to your mood. https://cinepicker.com/
Kennethkak (non vérifié)
lun, 02/02/2026 - 01:20
Permalien
Explore Curated Cinema Selections using Our Tool.
You can explore various film themes through this service.Every collection contains movie posters, preview trailers, and direct streaming access,and the collections are grouped into intuitive sections.New titles are constantly added to keep the selection current.This approach streamlines your search by bringing together all necessary elements.You can utilize this tool for your movie nights. https://cinepicker.com/
Kennethkak (non vérifié)
lun, 02/02/2026 - 10:06
Permalien
Dive into Thematic Film Collections on Our Site.
This site offers a curated approach to film discovery.Every collection contains visual posters, video trailers, and practical streaming guides,and the collections are arranged for easy browsing.The content is regularly updated with new additions.This approach helps you discover films more efficiently through centralized access.You can find recommendations that match your taste. https://cinepicker.com/
Kennethkak (non vérifié)
lun, 02/02/2026 - 14:15
Permalien
Dive into Thematic Film Collections with Our Resource.
This comprehensive platform serves as a guide for film enthusiasts.Each selection includes high-quality posters, engaging trailers, and convenient streaming links,and the collections are arranged for easy browsing.Fresh content is regularly incorporated to expand the offerings.This approach saves you time by consolidating resources in one place.You can browse the collections at your own pace. https://cinepicker.com/
Kennethkak (non vérifié)
lun, 02/02/2026 - 22:34
Permalien
Uncover New Movie Recommendations through Our Platform.
This collection helps you navigate the realm of cinema.Every collection contains film posters, trailer videos, and streaming service integrations,and the collections are categorized for straightforward navigation.Fresh content is periodically incorporated to expand the offerings.This approach helps you discover films more efficiently through centralized access.You can browse the collections leisurely. https://cinepicker.com/
Kennethkak (non vérifié)
mar, 02/03/2026 - 02:01
Permalien
Get Personalized Movie Suggestions using Our Tool.
This extensive platform serves as a guide for film enthusiasts.Each selection includes posters, trailers, and direct links to streaming services,and the collections are sorted by various interests.The platform is actively maintained with latest releases.This approach saves you time by consolidating resources in one place.You can access this content without hassle. https://cinepicker.com/
Kennethkak (non vérifié)
mar, 02/03/2026 - 09:25
Permalien
Get Personalized Movie Suggestions via Our Service.
You can explore various film themes through this service.Each selection features posters, trailers, and direct links to streaming services,and the collections are categorized for straightforward navigation.The platform is continuously maintained with new releases.This approach organizes content for effortless discovery.You can browse the collections at your own pace. https://cinepicker.com/
RobertFoers (non vérifié)
mar, 02/03/2026 - 10:52
Permalien
Зеркала под заказ
<a href=https://t.me/vlaledlight>Зеркала для ванных комнат</a> Трюмо с тремя зеркалами: удобное и функциональное решение для создания идеального макияжа и прически.
RobertFoers (non vérifié)
mar, 02/03/2026 - 11:42
Permalien
Зеркало поворотное ванна
<a href=https://t.me/vlaledlight>Цена зеркала трюмо</a> Зеркало в металлической раме - прочность и стиль в одном изделии.
Kennethkak (non vérifié)
mar, 02/03/2026 - 14:09
Permalien
Uncover New Movie Recommendations with Our Resource.
This resource is designed to help you discover interesting movies.Each selection features posters, trailers, and direct links to streaming services,and the collections are arranged for easy browsing.Fresh content is regularly incorporated to expand the offerings.This approach organizes content for quick and easy discovery.You can access this content easily. https://cinepicker.com/
Ajouter un commentaire